Hop Powdery Mildew: Biology and Management

David H. Gent USDA-ARS Corvallis, Oregon

Gary G. Grove, Mark E. Nelson, Doug Walsh Washington State University Prosser, Washington

Basal Foliage Management

Basal Foliage Management and Powdery Mildew on Cones

- Small sample size, but effect of:
 - Leaf disease levels
 (*P*=0.0001)
 - Basal foliage management (*P*=0.0204)
 - Interaction of leaf disease
 x basal foliage
 (*P*=0.0111)

Effect of fungicide timing on hop powdery mildew cv. Zeus – 2008

Disease Model Predictions

 Model predicts significant disease reduction from highly effective fungicides during critical cone development stage

EXTENSION

Cone Tissues

Bract

Bracteole (w/ seed)

Courtesy WFM

Field-Produced Cones

- Willamette
 - Greatest
 susceptibility
 observed during
 transition from
 burr to cone
 - Susceptibility decreased near harvest and postharvest period

Field-Produced Cones

 Decreasing severity and incidence of disease, although browning more pronounced with later infections

Disease Management

- How long does powdery mildew need to be controlled on cones?
 - Last spray date?
 - Yield and quality impacts?

Commercial Hop Yard (Zeus)

- Applications of Quintec, Pristine, or Folicur:
 - Mid July
 - Late July
 - Mid August
 - Late August
 - Early Sept (2010)

ASHINGTON STATE UNIV

2009 Late **Season Disease** Control **Commercial yard Disease reduction** from treatments through 29 July Associated with

improved cone color

 No effect on yield, aroma, bittering acids and storage index

- Powdery mildew:
 - 100% in every treatment (!)
- Yield:
 - 16 to 28% increase in cone yield due to fungicide treatments up to 12 August.
- Alpha and beta acids:
 - Greater than 1% increase in alpha acid and 0.5% beta acid in all treatments compared to last spray on 15 July
- Total alpha acid yield (yield x % alpha acid)
 - Increased 30% by treatments that continued through at least 12 August.

Fungicide and Harvest Date Effects on Dry Matter

	Dry matter (%)		
Last spray date (product)	14 Sept	21 Sept	29 Sept
July 15 (Quintec)	26.4	28.0	32.8
July 28 (Quintec)	26.1	27.5	32.5
August 12 (Pristine)	25.1	26.8	31.8
August 24 (Pristine)	25.5	25.2	31.3
Sept 8 (Folicur)	25.0	26.5	32.6
Average dry matter	25.6A	26.8B	32.2C

Cone Quality Evaluations

Experimental plots

- Disease reduction from treatments through 27 July
 - Trend for higher yield with later treatments
 - Cone color improved with late treatments
 - No effect on bittering acids, storage index or aroma between fungicide treatments

- Treatments stopped 13 July similar to non-treated plots
- No apparent trend in disease control from sprays past 27 July
- Related to timing of Quintec

 No effect of powdery mildew levels on yield, alpha acid, or alpha acid yield

EXTENSION

Cone Color Improvements

- Overall, relatively small affect of fungicides on color
- Fungicides up to 10 August associated with highest values of cone color

Powdery Mildew Development on Cones

Reduced Looper Damage on Fungicide Treated Plants

Yield and Quality Summary

- 1. Fungicide applications required through at least late July to minimize powdery mildew and maximize cone color quality
 - Apply most effective fungicides during transition period from burr to cone development in late July and early August
- 2. Disease control through this period can be associated with higher alpha acid content and yield, and certainly cone color
- 3. Additional late season sprays may be of value under moderate or high disease pressure conditions or moderately late harvest situations
 - With moderate to high disease levels or later harvest, cone color and alpha acid yield have been maximized by fungicide treatments that continue until just before harvest
 - No fungicide treatment maintained cone color when harvested too late

Hop Research Council Oregon Hop Commission Oregon Department of Agriculture-Specialty Crops Research Grant Washington Hop Commission Washington State Commission on Pesticide Registration Washington State University USDA-ARS Grower cooperators

> David Gent USDA-ARS Corvallis, Oregon 541-738-4167 gentd@onid.orst.edu